Researchers recently studied yeast populations to test the concept of “evolutionary rescue,” which is the supposed ability of organisms to “adapt rapidly through evolution” in response to environmental stress.1 A study of the changes in the single-cell creatures clearly showed that the yeast adapted. But the adaptations looked more like the product of the organisms’ own designed capabilities.

Researchers at McGill University in Montreal tracked changes in 2,000 generations of yeast, a common single-cell organism. Along the way, they added an environmental stressor in the form of salt. If evolution works the way that neo-Darwinism has proposed, then accidental mutations in some yeast individuals should lead to new molecules that help the organism cope with a saltier environment—as long as the environment doesn’t change too fast for the mutations to keep pace.

A McGill University press release stated that the yeast adaptations “can happen surprisingly fast, with 50-100 generations.”1 The scientists also found that if one population of yeast was allowed contact with another that was already salt-tolerant, then the chances of the offspring quickly and successfully adapting increased.

But what kinds of apparatuses are required to regulate salt in a cell? Man-made machines that measure salinity are much larger than the elegant and miniaturized system that lowly yeast possess. And yeast are equipped with mechanisms that constantly manage their internal salt levels. Without a salt-excreting mechanism already in place, single-cell creatures like yeast—which do not have the benefit of layers of protective cells—would have taken on lethal doses of salt without even detecting the situation, let alone mitigating it….

Continue Reading on www.icr.org