by Jake Hebert, Ph.D.

Scientists from Europe’s CERN research center presented evidence on July 4, 2012, for a particle that is likely the Higgs boson, the last remaining elementary particle predicted by the Standard Model of particle physics.1 Does this discovery have relevance for the creation-evolution controversy?

Particles can generally be classified into two categories, according to the quantum mechanical rules that they obey: fermions and bosons. The Higgs particle is called a boson because it falls into the second category.

Evidence for the Higgs boson was obtained from data collected at CERN’s Large Hadron Collider near Geneva, Switzerland, as well as at Fermilab’s Tevatron collider in the United States. Although the Higgs boson has been nicknamed the “God particle,” it is widely agreed that the name is more for publicity than accuracy, and many physicists do not like it. “I detest the name ‘God particle’. I am not particularly religious, but I find the term an ‘in your face’ affront to those who [are],” wrote physicist Vivek Sharma, a leader of the Higgs search. “I do experimental physics not GOD.”2

In order to understand the importance of the Higgs boson, it is necessary to review some modern physics. Quantum mechanics is a theory that successfully describes the behavior of matter and energy at subatomic and atomic scales, and quantum field theory is an extension of quantum mechanics. A field is a quantity that has a value at each point in space. Some fields are characterized by numbers at each point in space and are called scalar fields. A temperature field, for instance, would assign a temperature to each point in space and could, for instance, be used to show how the temperature within a room varies with location. Vector fields have both numbers and directions associated with each point in space; an example of a vector field would be the electric field surrounding a charged object.3….

Continue Reading on