Deposition of the unconformity-bounded sequence comprising the Great Artesian Basin in eastern Australia occurred in the Upper Zenithic phase as classified by the biblical geological model proposed previously by Walker. Relevant characteristics for classification include the continental scale of the structure and the presence of fossils, particularly fossil footprints. Classification was assisted by the fact that the structure has experienced minimal disturbance and significant erosion since deposition. The presence of flat-topped landforms in the thickest part of the sequence is also a significant factor assisting classification. 


The rocks of the Great Artesian Basin, Australia, have characteristics which make them easy to classify within a biblical geological framework. Covering a large area of eastern Australia they will provide a useful benchmark for further creationist geological work. 

Walker’s biblical geologic model.

Figure 1. Walker’s biblical geologic model.

The geological framework used for classification is shown in Figure 1. Walker1 has described the concept of the model and proposed a number of criteria by which geological structures may be classified. These ideas have been amplified and applied to the basement rocks of Brisbane, Australia.2 The method of classification involves a process of elimination based on significant characteristics relevant to the biblical model and the geological structure under consideration. 

The Great Artesian Basin

The Great Artesian Basin is the largest artesian basin of its kind in the world,3 occupying a flat depressed area of eastern Australia as illustrated in Figure 2. The basin is known from extensive drilling for artesian water, which is held under pressure in porous sandstone aquifers overlain by impervious shale aquicludes. When the pressure is relieved by boring through the shales into the sandstones, artesian water flows to the surface, often in great quantities and quite hot. The aquifer sandstones can be traced across the basin from the eastern margin where they are exposed. In the deeper parts they are over 2,000 m below the surface….

Continue Reading on