DNA is the famous molecule of heredity that carries the code of life—an altogether remarkable biopolymer (polynucleotide). As expected, the more research that is conducted on the DNA molecule, the more complexity it divulges.1

Decades ago, when less was known about this amazing molecule, the definition of the unit called the gene was fairly cut and dried. For example, in 1980 evolutionist David Kirk stated in his college biology text, “The units of heredity are invisible entities called genes, which specify the observable features of an organism.”2

Today, the gene is given molecular and nonmolecular labels: “In nonmolecular terms, a unit of inheritance that governs the character of a particular trait. In molecular terms, a segment of DNA containing the information for a single polypeptide or RNA molecule, including transcribed but non-coding regions.”3 Gerald Karp also stated, “Our concept of the gene has undergone a remarkable evolution as biologists have learned more and more about the nature of inheritance.”4

In his chapter on “the units of selection,” Mark Ridley wrote:

[American evolutionary biologist George C.] Williams defined the gene to make it almost true by definition that the gene is the unit of selection. He defined the gene as “that which segregates and recombines with appreciable frequency.”5

It’s hardly surprising, then, that someone has said, “What a gene is depends on who you ask.”

In the 21st century, the definition of a gene continues to become more convoluted, with the possibility that the word—like life—will remain a challenge to define (although a good description of “life” can be found on pages 11-15 of ICR’s Origin of Life science curriculum supplement). Confusion over what exactly a gene is has been added to by discoveries made through ongoing investigations into the genome (the total genetic material within a cell or individual).6….

Continue Reading on www.icr.org