Researchers were able to find 126 unique proteins from a frozen wooly mammoth in the first ever “shotgun sequence” of fossil protein content.1

The same team confirmed similar but fewer proteins in a Columbian mammoth fossil found in a temperate, not permafrost, climate. They said that the frozen wooly mammoth was 43,000 years old, but this is impossible to reconcile with the integrity and array of the discovered proteins.

A small international team analyzed the mammoth bones and published their findings in the Journal of Proteome Research.2 They used “the world’s fastest and most sensitive ion trap mass spectrometer,” according to the product’s website.3 Older versions of similar technology could only detect large amounts of proteins, but this new machine is able to accurately identify small amounts.

The result was an unprecedented array of proteins, including serum albumin, which plays the essential role of transporting hormones in animals. Most of the proteins were actually fragmented but digitally stitched together to reconstruct their original forms.

North Carolina State University paleontologist Mary Schweitzer, who discovered a few intact proteins in ancient dinosaur fossils in earlier studies, told science news site ProteoMonitor, “The discovery and sequencing of proteins other than collagen is a major advancement to the growing field of ‘paleoproteomics’ [the study of ancient proteins].”4

Schweitzer and a host of colleagues sequenced dinosaur proteins that included collagen, elastin, and laminin, even though dinosaurs are considered to be millions of years older than mammoths.5 Scientists know that such proteins exist in the spaces between cells, like in bone and connective tissues. But Schweitzer’s team had used the older detection technology, and paleontologists now want to try this newer equipment on more samples in the hopes that it will reveal even more protein sequence information…

Continue Reading on www.icr.org