by Brian Thomas, M.S.

People instantly recognize intelligent engineering in a structure that has optimized size or shape. Optimum parameters don’t just happen. So when two mechanical engineers recently discovered optimum sizing in locust legs, to what did they attribute that high level of engineering?

The researchers from Trinity College Dublin began by modeling hollow cylinders with various radius-to-thickness ratios—the basic shape of a bone’s cross-section called the “r/t value.” Then they compared their model’s optimum ratios to those of the locust tibia, a blue crab leg segment, and the human femur. David Taylor and Jan-Henning Dirks published their results in the Journal of the Royal Society Interface.1

What they found confirmed their expectation that “evolutionary selection has operated to optimize the use of bone material.”1 But their results also confirmed the expectations of intelligent design theorists and biblical creationists. All three origins frameworks expect to find optimized design in living creatures, but they disagree as to why.

The locust, actually a grasshopper that only swarms as a locust under certain cues, has a long, narrow tibia as a part of its back leg.2 As opposed to having to resist compression forces, grasshoppers call upon their tibias to resist bending while jumping. The researchers discovered that “the locust tibia has an r/t value that is close to optimal for resisting bending forces, and it appears to have adjusted its detailed shape to improve resistance to ovalization during bending,” as would be appropriate for jumping.1….

Continue Reading on www.icr.org