According to evolutionary theory, chemicals must have somehow organized themselves into cellular life, presumably long ago. And that means that enzymes must have formed themselves, too.

But enzymes are highly engineered miniaturized machines. Even intelligent human scientists armed with the most sophisticated technology cannot reproduce their design and manufacture—so, logically, neither can unintelligent chemicals or the laws that govern them. The title of a recent scientific report asserted that a particular enzyme evolved. The study results, however, clearly demonstrate that this enzyme was purposefully created.

The investigators compared the three-dimensional structures of similarly shaped enzymes that are found in different species of bacteria. One enzyme splits water and combines the resulting hydrogen atoms with sulfur in a process that captures chemical energy. The researchers compared it with another class of enzymes that also splits individual water molecules, but then combines the hydrogen with a carbon-based molecule.

The enzyme that manipulates sulfur—called a CS2 (carbon disulfide) hydrolase—is required because its bacteria inhabit sulfurous volcanic waters in Italy. The studies confirmed that the core structure of the CS2 hydrolase, like that of similar enzymes, is critical. The scientists wrote in Nature, “Any change in this area of the protein [enzyme] adversely affected protein activity.”1

On one hand, evolution’s story requires that, at some point in time, something altered what would become the enzyme core again and again, as each structural piece evolved into place over eons. On the other hand, science shows that altering the enzyme core in the slightest is impossible without making the whole structure useless.

The researchers also found that CS2 hydrolase is distinct from enzymes with an otherwise identical core because it has an additional long, narrow tunnel through which only CS2 can pass. The tunnel “functions as a specificity filter,” ensuring that no similar molecule such as carbon dioxide enters.1….

Continue Reading on