by D. Russell Humphreys

More good news for creation science

NASA’s MESSENGER spacecraft (figure 1) is continuing to produce surprising new evidence that Mercury’s magnetic field is as young as the Bible says. Since March 2011 the spacecraft has been in a near-polar orbit around Mercury. By now it has orbited the planet nearly a thousand times, repeatedly passing over the entire surface. Swooping low over the northern volcanic plains, the spacecraft discovered that the planet’s outer crust in that region is strongly magnetized.1 The strongest magnetization coincides with a broad topographic rise near the center of those plains. That leads the analyzing team to believe that the magnetization comes from basalt solidified from lava flowing up out of the deeper crust throughout the plain.

The crust magnetization is nearly vertical, just as is the planet’s overall magnetic field in those high latitudes. But MESSENGER found that the magnetization is opposite to the direction of today’s field, indicating that Mercury has reversed the direction of its field at least once in the past. The team of analysts says this

“ … implies that the magnetization is a remanent [remaining, permanent] magnetization acquired [in the past] when Mercury’s magnetic field was of the opposite polarity, and possibly stronger, than the present field.”

The last phrase above would have been more accurate if it had said, “ … and very probably much stronger than the present field.” Here’s why: The amount of magnetization depends on the amount and mineral form of iron in the rock, and on the strength of the field when it cools. The analysts conjectured that the iron in the crustal rocks is pure,2 an unlikely composition that might allow the past magnetizing field to be weak. However, the measured magnetism of basalts here on earth suggests that Mercury’s crustal basalts acquired their magnetism in a field at least ten times stronger than Mercury’s field today.3….


Continue Reading on