A number of cores have been drilled into the Greenland ice cap (Figure 1). Two of them, GRIP (Greenland Ice Project) and GISP2 (Greenland Ice Sheet Project) are only 28 km apart, and have been discussed in terms of their overall characteristics. Notably, the two cores disagree strongly in their bottom parts, which, according to conventional dating, are said to represent a time period beginning a few tens of thousands of years ago to about 250,000 years ago.1 This article complements Oard’s1 studies by focussing on the numerous discrepancies that occur within the top of the cores, representing the most recent 13,500 alleged years, as opposed to the bottom parts of the core that represent earlier periods of time. It draws on recently published research,2 which attempted to reconcile the two ice-core chronologies over that period. In particular, this paper examines the numerous difficulties in correlating these cores using ‘annual’ counted layers, sulfate-aerosol horizons, and the variation in oxygen isotopes. The variance in one core must be subject to ad hoccontractions and expansions (i.e. ‘accordioned’) in order to force it to fit the variance of other core. The lack of close correspondence between the two cores, especially in large segments (blocs), in spite of their geographic proximity, favours a catastrophic storm-dominated accumulation of the water material in the Greenland ice cap.

Non-annual Layers

A profusion of (usually) visually distinctive layers is visible in the ice cores due to different composition, crystal structure and colouring of the ice. The visual layers in the GISP2 core have now been counted back to allegedly 40,000 years BP (before the present), although it is acknowledged that there are constant, fine-scale counting uncertainties in the 1–2% range. There are, in addition, numerous short breaks due to core loss (usually <10 years), over the inferred period of 3,000–9,000 years BP,2 in which the number of missing layers must be interpolated from the thickness of the lost core sections.

It has previously been documented that the layers present need not be annual as uniformitarians assume.3 Indeed, this fact is unwittingly borne out in the latest study. There are a few centuries of sharp disagreement between the two cores at about the middle of the 13th millennium BP, during which the annual-layer assumption must be waived if a constant mutual δ18O signal is to be supposed:

‘ … then the problem is not missing core or other “block” data loss. Rather, the GRIP core lacks about half the annual layers throughout this interval, or the GISP2 ice contains many subannual structures which mimic annual bands, or the layers are in fact annual but one of the counts is erroneous.’….

Continue Reading on creation.com