by Randy J. Guliuzza, P.E., M.D.

Doctors, lawyers, and engineers. Engineers always seem to take third place in the list of esteemed professions. Exciting television programs feature skilled surgeons or smooth, well-dressed defense attorneys, but engineers are not primetime stars. That’s too bad, because they do exciting work, as reflected in one school’s motto, “Cool stuff doesn’t just make itself.”

Perhaps the coolest creations are the self-adjusting inventions, like spacecraft that maintain function even in challenging conditions. Living things also have this remarkable capability, only they do it far better. Could an engineer’s use of physics-based principles in design studies also be used to explain how organisms adapt?

What if the widely held notion of ecology-driven adaptation—established long before insights of molecular biology—is fundamentally wrong? What if organisms operate like self-adjusting entities capable of solving a broad range of environmental problems, empowering them to pioneer into new niches?

Design engineers approach the question of adaptation in organisms as they would address changes in human-designed inventions that self-adjust in fluctuating environments. They ask, “What if engineering principles also explain how organisms adapt?”

Why Use a Design-Centered Analysis of Adaptation?

Design-centered thinking enriches biological comprehension. Many scientists demonstrate unmistakable design parallels between the interconnected parts found in man-made items and those discovered in organisms. Within creatures, discoveries of intricate microscopic machines made of parts like switches, valves, and rotors bolster a scientifically observable and quantifiable case for intelligent design. Since design-centered analysis demonstrates that many of these parts are irreducibly complex, this design-based insight proves to be a powerful reason to reject explanations for complex parts as piece-by-piece amalgamations….

Continue Reading on