Researchers are still uncovering the amazing properties of DNA, the long molecule used by living systems to carry information. It is the densest data storage system known. With all that biological information packed into such a tiny space, shouldn’t it be difficult to access or copy?

One reason that DNA can be so readily accessed by special proteins within cells is because DNA is able to flex without breaking. A team of physicists at the Institut Laue-Langevin recently investigated the flexibility of DNA by measuring how well it conducts sound waves. Their results were published in Physical Review Letters.

In a press release, ILL physicist Mark Johnson said, “We are essentially measuring the speed of sound in DNA which gives you a direct measurement of its structural flexibility.”1 His team found that DNA has “a force constant of 83 N/m,” close to that of nylon.2

This fundamental property enables DNA to be manipulated by proteins in multiple vital processes. For example, when DNA is copied, protein complexes race down its length, splitting the DNA double-helix like a zipper so that each resulting single strand can be quickly formed into a new double-stranded molecule. This occurs at jet-engine speeds, requiring DNA to have significant strength!3 If copying occurred much slower, then cells would not survive the wait.

Similarly, DNA is forcefully and rapidly unwound and scanned when RNA is manufactured. The protein complex that makes RNA molecules using DNA sequences as templates was referred to as a “molecular juggernaut” in a recent report in the journal Cell.4 Yet DNA is strong and flexible enough to withstand these hourly rigors….

Continue Reading on