by Michael J. Oard

Provenance studies have become rather popular lately.1 In these studies, the types of grains or rocks within a formation are analyzed, and the original outcrop location “upcurrent” is determined. This in turn can provide the minimum transport distance, and the path of the particle is reinforced by paleocurrent indicators in the sedimentary rock. These indicators are typically abundant in sandstones and conglomerates.

Long distance spread of resistant rocks from mountains

Creationists have employed provenance studies in tracing the long distance transport of rocks to determine the paleo flow regime and transport distance. For instance, powerful currents in the northern Rockies region of the United States eroded and transported quartzite rocks both east and west: up to 1,300 km to the east and about 640 km to the west.2-6 During transport, the power of the current can be estimated by the rounding of these extremely resistant rocks and by percussion marks that have indented many of them. A similar phenomenon has been observed in northern Arizona, where quartzite and other igneous rocks were spread a modest distance east and northeast from their source across the area of the Mogollon Rim.7 And it is not restricted to the western United States; resistant rocks have spread up to 1,000 km east, south and west from sources in the Appalachian Mountains and a fair distance north of the Alaska Range in southern Alaska.8,9

The ubiquitous distribution of such gravel beds, the distance of transport from the nearest source upcurrent, the location of the source across present day mountain ranges or continental divides, the number and size of clasts transported, and the deposition of gravel beds on plateaus or mountain tops strongly suggests that the water responsible for these deposits was the enormous water runoff from Noah’s Flood, rather than the uniformitarian explanation of rivers. Based on modern observations, rivers do transport rocks, but do not deposit them over wide areas. Seldom do they have the current velocity to carry larger rocks long distances…..

Continue Reading on