by Shaun Doyle

Cladistics is the premier method used for determining evolutionary relationships in biology. The results of cladistics analyses, tree diagrams called cladograms, are often used as demonstrations of evolution. Though cladistics was developed by and for evolutionists, it still fails to demonstrate evolution, let alone biological reality. Evolution is still typically seen as the theoretical justification for using cladistics in paleontology, so the conclusion of evolution merely begs the question. Cladograms only demonstrate a nested hierarchy of biological characters; they tell us nothing about what produced the pattern. Evolutionary cladistics also depicts a simplistic view of biological change and fails to deal with pleiotropy within organisms. These problems were recognized by some evolutionists over 30 years ago, but their criticisms largely fell on deaf ears, most likely because their comments were used as ammunition by creationists. Many problems of phylogenetic inference that cladistics claims to solve still remain largely unsolved, such as distinguishing between homology and homoplasy. Perhaps the largest problem, however, is the illusion of evolution that cladograms and the language used to describe them give to the public. They both create the illusion of a resolved genealogy despite some cladists’ disavowal of any strict genealogical connotations.

What is cladistics?

 

Figure 1. Rooted cladogram of vertebrates based on analysis performed in table 1. This gives the illusion that ancestor–descendant relationships  have been identified. However, none of the nodes (hypothetical ancestors) have been identified; the only identified organisms are at the end of the branches.Figure 1. Rooted cladogram of vertebrates based on analysis performed in table 1. This gives the illusion that ancestor–descendant relationships have been identified. However, none of the nodes (hypothetical ancestors) have been identified; the only identified organisms are at the end of the branches.

Cladistics has become the premier method that evolutionists use to map out evolutionary relationships in paleontology. Cladograms are ubiquitous in the paleontological literature, and are often used as evidence for evolution. Cladistics is a method that classifies organisms in a nested hierarchy of similarity based on a comparison of individual characteristics. It will identify a series of characteristics in each taxon for comparison (table 1), and then arrange the taxa in a cladogram (figure 1). Then different cladograms are compared in order to find which cladogram organizes the taxa in a hierarchy that has the least non-nested characters and/or the most nested characters. Evolutionists typically interpret the nested pattern as descent with modification. Character state changes are seen as phylogenetic changes.

History of cladistics

Cladistics was first proposed by Willi Hennig in 1950 as an alternative to then current systematic methods. However, Hennig did not coin the term ‘cladistics’, but preferred to call his method ‘phylogenetic systematics’, as he believed his method was a more empirically based way of constructing phylogenies. Rather, Ernst Mayr, a noted critic of Hennig, first coined the term ‘cladistics’ in 1965.2  Moreover, it wasn’t until 1966, when Hennig’s original work was revised and translated into English,3 that cladistics begun to have a substantial impact on English-speaking evolutionists….

Continue Reading on creation.com